By Topic

From Modeling to Control of a PEM Fuel Cell Using Energetic Macroscopic Representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Boulon, L. ; FEMTO-ST, CNRS, Besanon, France ; Hissel, D. ; Bouscayrol, A. ; Pera, M.-C.

This paper presents a methodology to design the control part of a proton exchange membrane fuel cell (FC) stack. The objective is to control the FC voltage. This methodology is based on an energetic macroscopic representation (EMR) of the FC and leads to a so-called maximal control structure (MCS). The MCS is a step-by-step inversion of the EMR (inversion-model-based control structure). The control design process is based on an explicit definition of the problem. Basically, for instance, the tuning inputs, the system objectives, or constraints are highlighted to organize the control. Moreover, the MCS shows the places where sensors are required and controllers are requested. Unfortunately, the MCS is only a theoretical control structure. Consequently, a realistic structure needs some simplifications, leading to a so-called practical control structure. The FC model is first presented and experimentally validated. The designed control structure is then simulated, and the results are discussed.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:57 ,  Issue: 6 )