By Topic

Cooperative spectrum sensing based on the limiting eigenvalue ratio distribution in wishart matrices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Penna, F. ; Dept. of Electr. Eng. (DELEN), Politec. di Torino, Turino, Italy ; Garello, R. ; Spirito, M.A.

Recent advances in random matrix theory have spurred the adoption of eigenvalue-based detection techniques for cooperative spectrum sensing in cognitive radio. These techniques use the ratio between the largest and the smallest eigenvalues of the received signal covariance matrix to infer the presence or absence of the primary signal. The results derived so far are based on asymptotical assumptions, due to the difficulties in characterizing the exact eigenvalues ratio distribution. By exploiting a recent result on the limiting distribution of the smallest eigenvalue in complex Wishart matrices, in this paper we derive an expression for the limiting eigenvalue ratio distribution, which turns out to be much more accurate than the previous approximations also in the non-asymptotical region. This result is then applied to calculate the decision sensing threshold as a function of a target probability of false alarm. Numerical simulations show that the proposed detection rule provides a substantial improvement compared to the other eigenvalue-based algorithms.

Published in:

Communications Letters, IEEE  (Volume:13 ,  Issue: 7 )