By Topic

Medium access control priority mechanism for a DQMAN-based wireless network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
J. Alonso-Zarate ; Centre Tecnol. de Telecomunicacions de Catalunya (CTTC), Spain ; D. Gregoratti ; P. Giotis ; C. Verikoukis
more authors

The analysis of an access priority mechanism for a high-performance medium access control (MAC) protocol, the distributed queueing MAC protocol for wireless ad hoc networks (DQMAN), is presented in this letter. DQMAN is comprised of a hierarchical, dynamic, and spontaneous master-slave clustering algorithm together with an embedded tree-splitting collision resolution algorithm based on access mini-slots. The responsibility of being master entails extra functionality, and thus extra energy consumption. Therefore, this responsibility must be shared in a dynamic manner among all the stations of the network in order to ensure fairness in the system. By allowing those stations acting as master stations to avoid contention to get access to the channel, their average packet transmission delay can be effectively reduced compared to that of slave stations. Consequently, stations may be encouraged to operate in master mode regardless of the extra functions they may have to carry out. We analyze in this letter the reduced average packet transmission delay for masters.

Published in:

IEEE Communications Letters  (Volume:13 ,  Issue: 7 )