By Topic

A high performance differential amplifier through the direct monolithic integration of InP HBTs and Si CMOS on silicon substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

18 Author(s)
Kazior, T.E. ; Raytheon Integrated Defense Syst., Andover, MA, USA ; Laroche, J.R. ; Lubyshev, D. ; Fastenau, J.M.
more authors

We present results on the direct monolithic integration of III-V devices and Si CMOS on a silicon substrate. InP HBTs (0.5 times 5 um2 emitter) with ft and fmax > 200 GHz were grown directly in windows adjacent to CMOS transistors on silicon template wafers or SOLES (Silicon on Lattices Engineered Substrates). A BCB based multilayer interconnect process was used to interconnect the InP HBT and Si CMOS to create a differential amplifier demonstration circuit. The heterogeneously integrated differential amplifier serves as the building block for high speed, low power dissipation mixed signal circuits such as ADCs and DACs.

Published in:

Microwave Symposium Digest, 2009. MTT '09. IEEE MTT-S International

Date of Conference:

7-12 June 2009