By Topic

Efficient and Accurate Sound Propagation Using Adaptive Rectangular Decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Raghuvanshi, N. ; Dept. of Comput. Sci., Univ. of North Carolina at Chapel Hill, Chapel Hill, NC, USA ; Narain, R. ; Lin, M.C.

Accurate sound rendering can add significant realism to complement visual display in interactive applications, as well as facilitate acoustic predictions for many engineering applications, like accurate acoustic analysis for architectural design (Monks et al., 2000). Numerical simulation can provide this realism most naturally by modeling the underlying physics of wave propagation. However, wave simulation has traditionally posed a tough computational challenge. In this paper, we present a technique which relies on an adaptive rectangular decomposition of 3D scenes to enable efficient and accurate simulation of sound propagation in complex virtual environments. It exploits the known analytical solution of the wave equation in rectangular domains, and utilizes an efficient implementation of the discrete cosine transform on graphics processors (GPU) to achieve at least a 100-fold performance gain compared to a standard finite-difference time-domain (FDTD) implementation with comparable accuracy, while also being 10-fold more memory efficient. Consequently, we are able to perform accurate numerical acoustic simulation on large, complex scenes in the kilohertz range. To the best of our knowledge, it was not previously possible to perform such simulations on a desktop computer. Our work thus enables acoustic analysis on large scenes and auditory display for complex virtual environments on commodity hardware.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:15 ,  Issue: 5 )