Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Maximizing the effective capacity for wireless cooperative relay networks with QoS guarantees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shaolei Ren ; Dept. of Electron. & Comput. Eng., Hong Kong Univ. of Sci. & Technol., Kowloon, China ; Letaief, K.B.

In this paper, we propose a resource allocation scheme to increase the effective capacity subject to the queue-overflow statistical Quality-of-Service (QoS) requirement for a multi-relay cooperative wireless network. Firstly, we consider the block fading channels and derive an algorithm in which each relay is allocated a time slot of optimal length during the cooperation phase, based on the channel statistics. Our analysis indicates that when the QoS requirement is loose, only the relay with the best average channel condition should be selected for cooperation. On the other hand, when the QoS requirement becomes more stringent, more relays should participate in cooperation. The asymptotic case when either the transmit power or the number of relays goes to infinity is discussed, and we shall reveal a tradeoff between the transmit power and the number of relays, given a target effective capacity. By modeling the channel correlation by a two-state Markov model, we will develop two sub-optimal time-slot allocation algorithms which can substantially increase the effective capacity compared with the opportunistic and equal allocation schemes. Our results will show that the channel correlation can sharply decrease the effective capacity and that applying the optimal time-slot allocation result obtained in block fading channels directly to correlated fading channels is no longer optimal.

Published in:

Communications, IEEE Transactions on  (Volume:57 ,  Issue: 7 )