By Topic

Uplink capacity and interference avoidance for two-tier femtocell networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chandrasekhar, V. ; Dept. of Electr. & Comput. Eng., Univ. of Texas at Austin, Austin, TX, USA ; Andrews, J.G.

Two-tier femtocell networks- comprising a conventional cellular network plus embedded femtocell hotspots- offer an economically viable solution to achieving high cellular user capacity and improved coverage. With universal frequency reuse and DS-CDMA transmission however, the ensuing cross-tier interference causes unacceptable outage probability. This paper develops an uplink capacity analysis and interference avoidance strategy in such a two-tier CDMA network. We evaluate a network-wide area spectral efficiency metric called the operating contour (OC) defined as the feasible combinations of the average number of active macrocell users and femtocell base stations (BS) per cell-site that satisfy a target outage constraint. The capacity analysis provides an accurate characterization of the uplink outage probability, accounting for power control, path loss and shadowing effects. Considering worst case interference at a corner femtocell, results reveal that interference avoidance through a time-hopped CDMA physical layer and sectorized antennas allows about a 7x higher femtocell density, relative to a split spectrum two-tier network with omnidirectional femtocell antennas. A femtocell exclusion region and a tier selection based handoff policy offers modest improvements in the OCs. These results provide guidelines for the design of robust shared spectrum two-tier networks.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:8 ,  Issue: 7 )