Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Hessian and Concavity of Mutual Information, Differential Entropy, and Entropy Power in Linear Vector Gaussian Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Payaró, M. ; Dept. of Electron. & Comput. Eng., Hong Kong Univ. of Sci. & Technol., Kowloon, China ; Palomar, D.P.

Within the framework of linear vector Gaussian channels with arbitrary signaling, the Jacobian of the minimum mean square error and Fisher information matrices with respect to arbitrary parameters of the system are calculated in this paper. Capitalizing on prior research where the minimum mean square error and Fisher information matrices were linked to information-theoretic quantities through differentiation, the Hessian of the mutual information and the entropy are derived. These expressions are then used to assess the concavity properties of mutual information and entropy under different channel conditions and also to derive a multivariate version of an entropy power inequality due to Costa.

Published in:

Information Theory, IEEE Transactions on  (Volume:55 ,  Issue: 8 )