By Topic

Perfect Codes From Cayley Graphs Over Lipschitz Integers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Martinez, C. ; Dept. of Electron. & Comput., Univ. of Cantabria, Santander, Spain ; Beivide, R. ; Gabidulin, E.M.

The search for perfect error-correcting codes has received intense interest since the seminal work by Hamming. Decades ago, Golomb and Welch studied perfect codes for the Lee metric in multidimensional torus constellations. In this work, we focus our attention on a new class of four-dimensional signal spaces which include tori as subcases. Our constellations are modeled by means of Cayley graphs defined over quotient rings of Lipschitz integers. Previously unexplored perfect codes of length one will be provided in a constructive way by solving a typical problem of vertices domination in graph theory. The codewords of such perfect codes are constituted by the elements of a principal (left) ideal of the considered quotient ring. The generalization of these techniques for higher dimensional spaces is also considered in this work by modeling their signal sets through Cayley-Dickson algebras.

Published in:

Information Theory, IEEE Transactions on  (Volume:55 ,  Issue: 8 )