Cart (Loading....) | Create Account
Close category search window
 

An Information Theoretic Approach to Speaker Diarization of Meeting Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vijayasenan, D. ; Idiap Res. Inst., Martigny, Switzerland ; Valente, F. ; Bourlard, H.

A speaker diarization system based on an information theoretic framework is described. The problem is formulated according to the information bottleneck (IB) principle. Unlike other approaches where the distance between speaker segments is arbitrarily introduced, the IB method seeks the partition that maximizes the mutual information between observations and variables relevant for the problem while minimizing the distortion between observations. This solves the problem of choosing the distance between speech segments, which becomes the Jensen-Shannon divergence as it arises from the IB objective function optimization. We discuss issues related to speaker diarization using this information theoretic framework such as the criteria for inferring the number of speakers, the tradeoff between quality and compression achieved by the diarization system, and the algorithms for optimizing the objective function. Furthermore, we benchmark the proposed system against a state-of-the-art system on the NIST RT06 (rich transcription) data set for speaker diarization of meetings. The IB-based system achieves a diarization error rate of 23.2% compared to 23.6% for the baseline system. This approach being mainly based on nonparametric clustering, it runs significantly faster than the baseline HMM/GMM based system, resulting in faster-than-real-time diarization.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:17 ,  Issue: 7 )

Date of Publication:

Sept. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.