Cart (Loading....) | Create Account
Close category search window
 

Improving Structural Statistical Machine Translation for Sign Language With Small Corpus Using Thematic Role Templates as Translation Memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hung-Yu Su ; Dept. of Comput. Sci. & Inf. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Chung-Hsien Wu

This paper presents a structural statistical machine translation (SSMT) model to deal with the data sparseness problem that occurs as a result of the necessarily small corpus to translate Chinese into Taiwanese Sign Language (TSL). A parallel bilingual corpus was developed, and linguistic information from the Sinica Treebank is adopted for Chinese sentence analysis. The synchronous context free grammar (SCFG) was adopted to convert a Chinese structure to the corresponding TSL structure and then extract a translation memory which comprises the thematic relations between the grammar rules of both structures. In structural translation, the statistical MT (SMT) approach was used to align the thematic roles in the grammar rules and the translation memory provides the reference templates for TSL structure translation. Finally, the agreement information for TSL verbs was labeled for enriching the expressiveness of the translated TSL sequence. Several experiments were conducted to evaluate the translation performance and the communication effectiveness for the deaf. The evaluation results demonstrate that the proposed approach outperforms a baseline statistical MT system using the same small corpus, especially for the translation of long sentences.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:17 ,  Issue: 7 )

Date of Publication:

Sept. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.