Cart (Loading....) | Create Account
Close category search window
 

Improvement of Heat Dissipation Capability of Vacuum Device Using Iridium Nanoparticulate Film

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yong Han ; Key Lab. of High Power Microwave Sources & Technol., Chinese Acad. of Sci., Beijing, China ; Yan-Wen Liu ; Yao-Gen Ding ; Pu-Kun Liu

The effect of the iridium nanoparticulate film on heat dissipation capability of the vacuum device has been studied in this letter. In the experimental tests, the copper barrels of the slow-wave structures have been deposited with normal-Ir film and nano-Ir film, respectively. The radiation emissivity coefficients of differential materials have been accurately calculated using the experimental results, and then applied in the computer simulation. The agreement between the experimental results and the simulation results is excellent, suggesting that the iridium nanoparticulate film enables much better heat radiation performance than the normal metal materials.

Published in:

Electron Device Letters, IEEE  (Volume:30 ,  Issue: 8 )

Date of Publication:

Aug. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.