Cart (Loading....) | Create Account
Close category search window

Multiple Types of Movement-Related Information Encoded in Hindlimb/Trunk Cortex in Rats and Potentially Available for Brain–Machine Interface Controls

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Weiguo Song ; Dept. of Neurobiol. & Anatomy, Drexel Univ., Philadelphia, PA, USA ; Ramakrishnan, A. ; Udoekwere, U.I. ; Giszter, S.F.

Brain-machine interface (BMI) systems hold the potential to return lost functions to patients with motor disorders. To date, most efforts in BMI have concentrated on decoding neural activity from forearm areas of cortex to operate a robotic arm or perform other manipulation tasks. Efforts have neglected the locomotion functions of hindlimb/trunk cortex. However, the role of cortex in hindlimb locomotion of intact rats, which are often model systems for BMI testing, is usually considered to be small. Thus, the quality of representations of locomotion available in this area was uncertain. We designed a new rodent BMI system, and tested decoding of the kinematics of trunk and hindlimbs during locomotion using linear regression. Recordings were made from the motor cortex of the hindlimb/trunk area in rats using arrays of six tetrodes (24 channels total). We found that multiple movement-related variables could be decoded simultaneously during locomotion, ranging from the proximal robot/pelvis attachment point, and the distal toe position, through hindlimb joint angles and limb endpoint in a polar coordinate system. Remarkably, the best reconstructed motion parameters were the more proximal kinematics, which might relate to global task variables. The pelvis motion was significantly better reconstructed than any other motion features.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:56 ,  Issue: 11 )

Date of Publication:

Nov. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.