By Topic

A New Discriminative Common Spatial Pattern Method for Motor Imagery Brain–Computer Interfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Thomas, K.P. ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Cuntai Guan ; Lau, C.T. ; Vinod, A.P.
more authors

Event-related desynchronization/synchronization patterns during right/left motor imagery (MI) are effective features for an electroencephalogram-based brain-computer interface (BCI). As MI tasks are subject-specific, selection of subject-specific discriminative frequency components play a vital role in distinguishing these patterns. This paper proposes a new discriminative filter bank (FB) common spatial pattern algorithm to extract subject-specific FB for MI classification. The proposed method enhances the classification accuracy in BCI competition III dataset IVa and competition IV dataset IIb. Compared to the performance offered by the existing FB-based method, the proposed algorithm offers error rate reductions of 17.42% and 8.9% for BCI competition datasets III and IV, respectively.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:56 ,  Issue: 11 )