Cart (Loading....) | Create Account
Close category search window

10-Gb/s Direct Modulation up to 100 ^{\circ} C Using 1.3- \mu m-Range Metamorphically Grown Strain Compensated InGaAs–GaAs MQW Laser on GaAs Substrate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Arai, M. ; Photonics Labs., NTT Corp., Atsugi, Japan ; Tadokoro, T. ; Fujisawa, T. ; Kobayashi, W.
more authors

We have realized 10-Gb/s direct modulation up to 100degC using a metamorphic InGaAs multiple-qunatum well (MQW) laser on a GaAs substrate. The highly strained InGaAs quantum well (QW) and strain-compensated GaAs barrier layer allowed 1.3-mum-range lasing and an increased number of QWs (six). This laser with a 200-mum-long short cavity and a narrow ridge had maximum relaxation oscillation frequencies of 13 and 6 GHz at 25degC and 100degC, respectively. A 10-km single-mode fiber error-free transmission was successfully obtained at a temperature of 85degC .

Published in:

Photonics Technology Letters, IEEE  (Volume:21 ,  Issue: 18 )

Date of Publication:

Sept.15, 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.