By Topic

Wide Temperature Range Operation of a 1.55- \mu m 40-Gb/s Electroabsorption Modulator Integrated DFB Laser for Very Short-Reach Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Wataru Kobayashi ; Photonics Labs., NTT Corp., Atsugi, Japan ; Takayuki Yamanaka ; Masakazu Arai ; Naoki Fujiwara
more authors

We present the uncooled operation of a 1.55- mum 40-Gb/s InGaAlAs electroabsorption modulator (EAM) integrated distributed-feedback (DFB) laser within a temperature range of 95degC (-15degC to 80degC ). To the best of our knowledge, this is the largest temperature range reported so far for such a 40-Gb/s EAM integrated DFB laser. We designed the EAM to operate at high speed by reducing the electrical parasitics, and we achieved a 3-dB frequency bandwidth of over 39 GHz for an EAM length of less than 150 mum. We demonstrated a 2-km single-mode fiber (SMF) transmission at 40-Gb/s over a wide temperature range of -15degC to 80degC by adjusting only the bias voltage to the EAM while keeping the modulation voltage swing constant at 2.0 V when the temperature changed. We achieved a dynamic extinction ratio of over 8.2 dB and a 2-km SMF transmission with a power penalty of less than 2 dB over a wide temperature range.

Published in:

IEEE Photonics Technology Letters  (Volume:21 ,  Issue: 18 )