Cart (Loading....) | Create Account
Close category search window
 

MEMS Mechanical Fatigue: Experimental Results on Gold Microbeams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Soma, A. ; Mech. Eng. Dept., Politec. di Torino, Turin, Italy ; De Pasquale, G.

This paper proposes a new strategy for detecting material strength loss under mechanical fatigue on the basis of the pull-in voltage of the test device. Gold microbeam specimens are tested for mechanical fatigue using an electrostatically actuated dedicated device. The design of the fatigue device is discussed, providing the analysis of stress distribution inside the specimen. The finite-element method is used to simulate the electromechanical coupling. The fatigue limit is estimated through the ldquostaircaserdquo method, and a Wohler curve is obtained from experiments. The surface topography evolution is monitored by scanning electron microscope images; specimen failure modes and material degradation are discussed, revealing the local yield of the material on the upper surface of the beam. The type of degradation appears to be in agreement with the established literature as a consequence of fatigue.

Published in:

Microelectromechanical Systems, Journal of  (Volume:18 ,  Issue: 4 )

Date of Publication:

Aug. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.