By Topic

Stability Analysis of Discrete-Time Recurrent Neural Networks With Stochastic Delay

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yu Zhao ; Space Control & Inertial Technol. Res. Center, Harbin Inst. of Technol., Harbin, China ; Huijun Gao ; James Lam ; Ke Chen

This paper is concerned with the stability analysis of discrete-time recurrent neural networks (RNNs) with time delays as random variables drawn from some probability distribution. By introducing the variation probability of the time delay, a common delayed discrete-time RNN system is transformed into one with stochastic parameters. Improved conditions for the mean square stability of these systems are obtained by employing new Lyapunov functions and novel techniques are used to achieve delay dependence. The merit of the proposed conditions lies in its reduced conservatism, which is made possible by considering not only the range of the time delays, but also the variation probability distribution. A numerical example is provided to show the advantages of the proposed conditions.

Published in:

IEEE Transactions on Neural Networks  (Volume:20 ,  Issue: 8 )