Cart (Loading....) | Create Account
Close category search window
 

Stability-based actuator scheduling in distributed processes with control and communication constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ghantasala, S. ; Dept. of Chem. Eng. & Mater. Sci., Univ. of California, Davis, CA, USA ; El-Farra, N.H.

This work focuses on control of distributed processes modeled by linear parabolic partial differential equations (PDEs) with constrained and quantized control inputs. Using a suitable finite-dimensional model that captures the PDE's dominant dynamics, we first characterize the inherent conflict in the control design objectives when both control constraints and quantization are simultaneously present, and the implications of this conflict for the spatial placement of the control actuators. At the heart of this conflict is the fact that control constraints limit the set of initial conditions starting from where stability can be achieved, while quantization constrains the set of terminal states that the system can be steered to. Using Lyapunov-based techniques, we explicitly characterize both the stability and terminal regions in terms of the control constraints, the quantization levels and the actuator spatial locations. The analysis reveals that the actuator configuration with the largest stability region also possesses the largest terminal region. This implies that steering the closed-loop state from large initial conditions to arbitrarily small terminal sets may not be possible using a single actuator configuration. To resolve this conflict, we devise an actuator scheduling strategy that orchestrates a finite number of transitions between different actuator configurations based on where the closed-loop state is with respect to the stability and terminal regions at any given time. The theoretical results are illustrated using a diffusion-reaction process example.

Published in:

Control and Automation, 2009. MED '09. 17th Mediterranean Conference on

Date of Conference:

24-26 June 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.