By Topic

Tuning fuzzy PID controllers using ant colony optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Boubertakh, H. ; LAMEL, Univ. of Jijel, Jijel, Algeria ; Tadjine, M. ; Glorennec, P.-Y. ; Labiod, S.

Ant colony optimization (ACO) is one of the swarm intelligence (SI) techniques. It is a bio-inspired optimization method that has proven its success through various combinatorial optimization problems. This paper proposes an ant colony optimization algorithm for tuning fuzzy PID controllers. First, the design of typical Takagi-Sugeno (TS) fuzzy PID controllers is investigated. The tuning parameters of these controllers have physical meaning which makes its tuning task easier than conventional PID controllers. Simulation examples are provided to illustrate the efficiency of the proposed method.

Published in:

Control and Automation, 2009. MED '09. 17th Mediterranean Conference on

Date of Conference:

24-26 June 2009