By Topic

A SLAM algorithm based on the central difference Kalman filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jihua Zhu ; Xian Jiaotong Univ., Xian, China ; Nanning Zheng ; Zejian Yuan ; Qiang Zhang
more authors

This paper presents an central difference Kalman filter (CDKF) based simultaneous localization and mapping (SLAM) algorithm, which is an alternative to the classical extended Kalman filter based SLAM solution (EKF-SLAM). EKF-SLAM suffers from two important problems, which are the calculation of Jacobians and the linear approximations to the nonlinear models. They can lead the filter to be inconsistent. To overcome the serious drawbacks of the previous frameworks, Sterling's polynomial interpolation method is employed to approximate nonlinear models. Combined with the Kalman filter framework, CDKF is proposed to solve the probabilistic state-space SLAM problem. The proposed approach improves the filter consistency and state estimation accuracy. Both simulated experiments and bench mark data set are used to demonstrating the superiority of the proposed algorithm.

Published in:

Intelligent Vehicles Symposium, 2009 IEEE

Date of Conference:

3-5 June 2009