By Topic

Ego-motion and indirect road geometry estimation using night vision

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Thomas B. Schon ; Division of Automatic Control, Linköping University, SE-581 83, Sweden ; Jacob Roll

The sensors present in modern premium cars deliver a wealth of information. We will in this work illustrate one way of making better use of the sensor information already present in modern premium cars. More specifically, we will show how a far infrared (FIR) camera can be used to enhance the estimates of the vehicle ego-motion and indirectly the road geometry in 3D. The FIR camera is primarily intended for pedestrian detection. The solution is obtained by solving a suitable sensor fusion problem, where we merge information from proprioceptive sensors with the FIR camera images. In order to illustrate the performance of the proposed method we have made use of measurement sequences recorded during night-time driving on rural roads in Sweden. The results illustrate that the FIR images can be used to improve the ego-motion estimation, especially during night time driving.

Published in:

Intelligent Vehicles Symposium, 2009 IEEE

Date of Conference:

3-5 June 2009