By Topic

Experimental use of electronic nose for analysis of volatile organic compound (VOC)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Syed Hasan Saeed ; Deptt. of Electronics & Comm. Engg. Integral University, Lucknow, India ; Zia Abbas ; Bal Gopal

An electronic nose is an instrument intended to mimic the human sense of smell. Electronic noses (e-nose) employ an array of chemical gas sensors, a sample handling system and a pattern recognition system. Pattern recognition provides a higher degree of selectivity and reversibility to the system leading to an extensive range of applications. These ranges from the food and medical industries to environmental monitoring and process control. Many other types of different gas sensors available. These include conducting polymers (CP), metal oxide semiconductors (MOS), piezoelectric, optical fluorescence, quartz crystal microbalance (QCM) and amperometric gas sensors. The ideal gas sensor would exhibit reliability, robustness, sensitivity, selectivity and reversibility. High selectivity with high reversibility is difficult to attain. After signal processing and feature extraction the output of the sensors provide a unique ldquosmellprintrdquo for that substances which can be used to classify, measure concentration, or verify quality. The present paper illustrates the function of electronic nose, its application and investigates the effective use of e-nose in detecting gases that have some smell developed by the volatile organic compounds (VOC) like ethanol, acetone and benzene at different concentrations. The response and characteristics prove that the Electronic nose is a reliable instrument which can be used for environment control (air quality, pollutants, and gas emission levels), medical science (urine, skin and breath odour etc.), food industry (coffee, milk, soft drink fish, meat etc.), pharmaceutics, chemical industry, Defence and security industries (detecting humanitarian land mines etc.) and semiconductor industrial processes.

Published in:

Multimedia, Signal Processing and Communication Technologies, 2009. IMPACT '09. International

Date of Conference:

14-16 March 2009