By Topic

Optimization of a composite surface model for the radar backscattering cross section of the ocean surface as measured by wind scatterometers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Romeiser, R. ; Inst. of Oceanogr., Hamburg Univ., Germany

A calibrated composite surface model for the calculation of absolute normalized radar backscattering cross sections (NRCS) of the ocean surface is presented. The model is based on a Taylor expansion of the NRCS, as given by Bragg scattering theory, up to second order in the surface slope. Measured NRCS values for a variety of radar frequencies, polarizations, incidence angles, azimuthal radar look directions, and wind speeds can be well reproduced after some reasonable tuning of the input ocean wave spectrum. The model can thus be considered as an advanced wind scatterometer model based on physical principles. Due to this fact it is also well suited for general applications like the calculation of NRCS variations associated with distortions of the wave spectrum in the presence of surface current gradients

Published in:

Geoscience and Remote Sensing Symposium, 1996. IGARSS '96. 'Remote Sensing for a Sustainable Future.', International  (Volume:1 )

Date of Conference:

27-31 May 1996