Cart (Loading....) | Create Account
Close category search window
 

Predicting Co-Complexed Protein Pairs Based on Communication Model Using Diverse Biological Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Zhang Kuan ; Dept. of Comput. Sci. & Technol., Univ. of Sci. & Technol. of China, Hefei, China ; Zheng Hao-ran ; Yang Xiao-fei ; Han Si-yuan
more authors

Protein-protein interactions play key role in many fundamental biological processes, and comprehensively identifying them represents a crucial step towards systematically defining their cellular roles. Machine learning techniques have been employed to predict protein-protein interactions. One of such approaches is Naive Bayes approach which assumes conditional independence between features. And such problems as suffering from the missing value problems or being prohibitively time-consuming prevent them from being applied to predict PPI as readily as NB. In this work, we frame predicting PPI as a communication problem, and we train a classifier based on channel model (CBCM) to discriminate between pairs of proteins that are co-complexed and pairs that are not. We theoretically demonstrate that NB can be unified into CBCM in certain condition and also experimentally validate that CBCM is an effective approach for predicting co-complexed protein pairs from integrating diverse biological data. Our study suggests that PPI prediction problem can be effectively solved from the point view of communication problem.

Published in:

Bioinformatics and Biomedical Engineering , 2009. ICBBE 2009. 3rd International Conference on

Date of Conference:

11-13 June 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.