By Topic

Physiological Identification of Salt Tolerance in Transgenic Tobacco Expressing Genes Related to Plant Trehalose Metabolism

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guo Bei ; Dept. of Biotechnol., Beijing Univ. of Agric., Beijing, China ; Cao Qinqing ; Yang Aizhen ; Liu Yufen

According to the previous results of the molecular identifications of transgenic tobaccos, the representative individuals, CK (non-transgenic), 121 (with pBI121 vector), 1285 (with pGSA1285 vector), T4 (with gene of trehalase, TRE), SI, S5 (with gene of trehalose-6-phosphate synthase, TPS), P3 (with gene of trehalose -6 - phosphate phosphatase, TPP), a3 (with anti-TRE), i2 (with RNAi-TRE), were selected for identification of salt tolerance, and the chlorophyll content, Malondialdehyde (MDA), relative conductivity, catalase, proline and peroxidase (POD) have been measured after salt stress during this experiment. The results showed that the transgenic tobaccos with anti-TRE and RNAi-TRE grew better than other individuals under 100 mmol/L NaCl salt stress conditions, T4's MDA was observably higher than that of other individuals and i2'POD was markedly higher than other plants. These indicate that through application the antisense RNA and RNA interference technology to trehalase gene, it is possible to make the receptor trehalose metabolism changes. The weakening of expression of trehalase gene led to the accumulation of trehalose content and the enhancement of salt tolerance in the transgenic tobaccos.

Published in:

Bioinformatics and Biomedical Engineering , 2009. ICBBE 2009. 3rd International Conference on

Date of Conference:

11-13 June 2009