Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Molecular Dynamics Simulation of HIV-1 gp41 and the N554D/S649A Double Mutation for Drug Resistance to Enfuvirtide

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jian Jun Tan ; Coll. of Life Sci. & Bioeng., Beijing Univ. of Technol., Beijing, China ; Ting Guang Sun ; Wei Zu Chen ; Cun Xin Wang

Enfuvirtide is a fusion inhibitor that was obtained from the C-terminal region of the ectodomain of gp41 in HIV-1. Nevertheless, the viral resistance to enfuvirtide limits the long-term efficacy of treatment patients of HIV infection. In order to study molecular mechanism of resistance, we build the ectodomain of gp41 trimer using the homology modeling and molecular dynamics (MD) simulations. A few HIV's patients, using the enfuvirtide treatment, were found an S649A mutation in the HR2 domain accompanied HR1 mutations at site N554D. This demonstrated that double mutations (N554D/S649A) of gp41, lead to viral resistance to enfuvirtide. Therefore, we executed two MD simulations to study the double mutations structure and the wild type of HIV-1 gp41, respectively. In the wild type simulation, there were two hydrogen bonds around Asn554 and Ser649 (near by the mutation's site) and two hydrogen bonds between Asn554 and the HR2 region of gp41. In contrast, these hydrogen bonds do not appear in the simulation of the double mutation model. Otherwise, we found that the residue mutations in the HR1 region increase the free energy, however, in the HR2 region decrease the free energy. Our results advise a possible Enfuvirtide-resistance mechanism: The N554D mutation in the HR1 region reduced the binding affinity between enfuvirtide and HR1 trimer complex and leads to resistances. The N554D/S649A double mutation restores the virus to a viably competent state.

Published in:

Bioinformatics and Biomedical Engineering , 2009. ICBBE 2009. 3rd International Conference on

Date of Conference:

11-13 June 2009