Cart (Loading....) | Create Account
Close category search window
 

Ferroelectric properties of epitaxial Pb(Zr,Ti)O3 thin films on silicon by control of crystal orientation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Dekkers, M. ; MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands ; Nguyen, M.D. ; Steenwelle, Ruud ; te Riele, Paul M.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3163057 

Crystalline Pb(Zr,Ti)O3 (PZT) thin films between metallic-oxide SrRuO3 (SRO) electrodes were prepared using pulsed laser deposition on CeO2/yttria-stabilized zirconia buffered silicon (001) substrates. Different deposition conditions for the initial layers of the bottom SRO electrode result in an orientation switch. Either (110)- or (001)-oriented SRO thin films are obtained and the PZT films deposited on the bottom electrode continued both growth directions. The ferroelectric characteristics of the SRO/PZT/SRO capacitors are found to be strongly dependent on their crystalline orientation: PZT (001)-oriented thin films showed stable, high quality ferroelectric response, while the remnant polarization of the PZT (110)-oriented thin films only show high response after multiple switching cycles.

Published in:

Applied Physics Letters  (Volume:95 ,  Issue: 1 )

Date of Publication:

Jul 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.