By Topic

Model Selection Criteria for Image Restoration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Abd-Krim Seghouane ; Canberra Res. Lab., Nat. ICT Australia (NICTA), Canberra, ACT, Australia

In this brief, the image restoration problem is approached as a learning system problem, in which a model is to be selected and parameters are estimated. Although the parameters which correspond to the restored image can easily be obtained, their quality depend heavily on a proper choice of the regularization parameter that controls the tradeoff between fidelity to the blurred noisy observed image and the smoothness of the restored image. By analogy between the model selection philosophy that constitutes a fundamental task in systems learning and the choice of the regularization parameter, two criteria are proposed in this brief for selecting the regularization parameter. These criteria are based on Bayesian arguments and the Kullback-Leibler divergence and they can be considered as extensions of the Bayesian information criterion (BIC) and the Akaike information criterion (AIC) for the image restoration problem.

Published in:

IEEE Transactions on Neural Networks  (Volume:20 ,  Issue: 8 )