By Topic

Asymptotic Tracking of Uncertain Systems With Continuous Control Using Adaptive Bounding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stepanyan, V. ; NASA Ames Res. Center, Mission Critical Technol. Inc., Moffett Field, CA, USA ; Kurdila, A.

This paper presents a robust adaptive control design method for a class of multiple-input-multiple-output uncertain nonlinear systems in the presence of parametric and nonparametric uncertainties and bounded disturbances. Using the approximation properties of the unknown continuous nonlinearities and the adaptive bounding technique, the developed controller achieves asymptotic convergence of the tracking error to zero, while ensuring boundedness of parameter estimation errors. The algorithm does not assume the knowledge of any bound on the unknown quantities in designing the controller. It is based on an integral technique involving the filtered tracking error and produces a continuous control. Theoretical developments are illustrated via simulation results.

Published in:

Neural Networks, IEEE Transactions on  (Volume:20 ,  Issue: 8 )