Cart (Loading....) | Create Account
Close category search window

Natural and Seamless Image Composition With Color Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wenxian Yang ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Jianmin Zheng ; Jianfei Cai ; Rahardja, S.
more authors

While the state-of-the-art image composition algorithms subtly handle the object boundary to achieve seamless image copy-and-paste, it is observed that they are unable to preserve the color fidelity of the source object, often require quite an amount of user interactions, and often fail to achieve realism when there exists salient discrepancy between the background textures in the source and destination images. These observations motivate our research towards color controlled natural and seamless image composition with least user interactions. In particular, based on the Poisson image editing framework, we first propose a variational model that considers both the gradient constraint and the color fidelity. The proposed model allows users to control the coloring effect caused by gradient domain fusion. Second, to have less user interactions, we propose a distance-enhanced random walks algorithm, through which we avoid the necessity of accurate image segmentation while still able to highlight the foreground object. Third, we propose a multiresolution framework to perform image compositions at different subbands so as to separate the texture and color components to simultaneously achieve smooth texture transition and desired color control. The experimental results demonstrate that our proposed framework achieves better and more realistic results for images with salient background color or texture differences, while providing comparable results as the state-of-the-art algorithms for images without the need of preserving the object color fidelity and without significant background texture discrepancy.

Published in:

Image Processing, IEEE Transactions on  (Volume:18 ,  Issue: 11 )

Date of Publication:

Nov. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.