By Topic

Efficient scheduling of task graph collections on heterogeneous resources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this paper, we focus on scheduling jobs on computing grids. In our model, a grid job is made of a large collection of input data sets, which must all be processed by the same task graph or workflow, thus resulting in a collection of task graphs problem. We are looking for a competitive scheduling algorithm not requiring complex control. We thus only consider single-allocation strategies. In addition to a mixed linear programming approach to find an optimal allocation, we present different heuristic schemes. Then, using simulations, we compare the performance of our different heuristics to the performance of a classical scheduling policy in Grids, HEFT. The results show that some of our static-scheduling policies take advantage of their platform and application knowledge and outperform HEFT, especially under communication-intensive scenarios. In particular, one of our heuristics, DELEGATE, almost always achieves the best performance while having lower running times than HEFT.

Published in:

Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on

Date of Conference:

23-29 May 2009