By Topic

Data-driven estimation of multiple fault parameters in permanent magnet synchronous motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chakraborty, S. ; Mech. Eng. Dept., Pennsylvania State Univ., University Park, PA, USA ; Rao, C. ; Keller, E. ; Ray, A.
more authors

This paper presents symbolic analysis of time series data for estimation of multiple faults in permanent magnet synchronous motors (PMSM). The analysis is based on an experimentally validated dynamic model, where the flux linkage of the permanent magnet and friction in the motor bearings are varied in the simulation model to represent different stages of degradation. The fault magnitudes are estimated from the time series of the instantaneous line current. The behavior patterns of the PMSM are compactly generated as quasi-stationary state probability histograms associated with the finite state automata of its symbolic dynamic representation. The proposed fault estimation method is suitable for real-time execution on a limited-memory platforms, such as those used in sensor network nodes.

Published in:

American Control Conference, 2009. ACC '09.

Date of Conference:

10-12 June 2009