Cart (Loading....) | Create Account
Close category search window
 

A distributed dynamical scheme for fastest mixing Markov chains

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zavlanos, M.M. ; Dept. of Electr. & Syst. Eng., Univ. of Pennsylvania, Philadelphia, PA, USA ; Koditschek, D.E. ; Pappas, G.J.

This paper introduces the problem of determining through distributed consensus the fastest mixing Markov chain with a desired sparsity pattern. In contrast to the centralized optimization-based problem formulation, we develop a novel distributed relaxation by constructing a dynamical system over the cross product of an appropriately patterned set of stochastic matrices. In particular, we define a probability distribution over the set of such patterned stochastic matrices and associate an agent with a random matrix drawn from this distribution. Under the assumption that the network of agents is connected, we employ consensus to achieve agreement of all agents regardless of their initial states. For sufficiently many agents, the law of large numbers implies that the asymptotic consensus limit converges to the mean stochastic matrix, which for the distribution under consideration, corresponds to the chain with the fastest mixing rate, relative to a standard bound on the exact rate. Our approach relies on results that express general element-wise nonnegative stochastic matrices as convex combinations of 0-1 stochastic matrices. Its performance, as a function of the weights in these convex combinations and the number of agents, is illustrated in computer simulations. Because of its differential and distributed nature, this approach can handle large problems and seems likely to be well suited for applications in distributed control and robotics.

Published in:

American Control Conference, 2009. ACC '09.

Date of Conference:

10-12 June 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.