By Topic

Neural network-based approach for early detection of cascading events in electric power systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rigatos, G. ; Unit of Ind. Autom., Ind. Syst. Inst., Rion Patras ; Siano, P. ; Piccolo, A.

This study proposes neural modelling and fault diagnosis methods for the early detection of cascading events in electric power systems. A neural-fuzzy network is used to model the dynamics of the power transmission system in fault-free conditions. The output of the neural-fuzzy network is compared to measurements from the power system and the obtained residuals undergo statistical processing according to a fault detection and isolation algorithm. If a fault threshold, defined by the fault detection and isolation (FDI) algorithm, is exceeded then deviation from normal operation can be detected at its early stages and an alarm can be launched. In several cases fault isolation can be also performed, that is the sources of fault in the power transmission system can be also identified. The performance of the proposed methodology is tested through simulation experiments.

Published in:

Generation, Transmission & Distribution, IET  (Volume:3 ,  Issue: 7 )