Cart (Loading....) | Create Account
Close category search window
 

Performance analysis of free-space optical communication systems over atmospheric turbulence channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nistazakis, H.E. ; Dept. of Electron., Comput., Telecommun. & Control, Univ. of Athens, Athens ; Tsiftsis, T.A. ; Tombras, G.S.

Turbulence fading is one of the main impairments affecting the operation of free-space optical (FSO) communication systems. The authors study the performance of FSO communication systems, also known as wireless optical communication systems, over log-normal and gamma-gamma atmospheric turbulence-induced fading channels. These fading models describe the atmospheric turbulence because of its very good agreement with experimental measurement data. Closed-form expressions for the average (ergodic) capacity and the outage probability are derived for both statistical models. Another contribution of this work is a study of how the performance metrics are affected by the atmospheric conditions and other parameters such as the length of the link and the receiver's aperture diameter. The derived analytical expressions are verified by various numerical examples and can be used as an alternative to time-consuming Monte-Carlo simulations.

Published in:

Communications, IET  (Volume:3 ,  Issue: 8 )

Date of Publication:

August 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.