Cart (Loading....) | Create Account
Close category search window
 

The effects of shell characteristics on the current-voltage behaviors of dye-sensitized solar cells based on ZnO/TiO2 core/shell arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Wang, Meili ; Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China ; Huang, Changgang ; Cao, Yongge ; Yu, Qingjiang
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3167811 

The ZnO/TiO2 core/shell structure was formed through deposition of a TiO2 coating layer on the hydrothermally fabricated ZnO nanorod arrays through radio frequency magnetron sputtering. The effects of the TiO2 shell’s characteristics on the current-voltage behaviors of the core/shell-based dye-sensitized solar cells (CS-DSSC) were investigated. As the rates of injection, transfer, and recombination of electrons of such CS-DSSC were affected significantly by the crystallization, morphology, and continuity of the TiO2 shells, the photovoltaic efficiency was accordingly varied remarkably. In addition, the efficiency was further improved by enhancing the surface area in the core/shell electrode.

Published in:

Applied Physics Letters  (Volume:94 ,  Issue: 26 )

Date of Publication:

Jun 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.