By Topic

A Novel Wideband FMM for Fast Integral Equation Solution of Multiscale Problems in Electromagnetics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vikram, M. ; Dept. of Electr. & Comput. Eng., Michigan State Univ., East Lansing, MI, USA ; He Huang ; Shanker, B. ; Van, T.

In this paper, we propose a novel scheme to accelerate integral equation solvers when applied to multiscale problems. These class of problems exhibit multiple length/frequency scales and arise when analyzing scattering/radiation from realistic structures where dense discretization is necessary to accurately capture geometric features. Solutions to the discretized integral equations due to these structures is challenging, due to their high computational cost and ill-conditioning of the resulting matrix system. The focus of this paper is on ameliorating the computational cost. Our approach will rely on exploiting the recently developed accelerated Cartesian expansion (ACE) algorithm to arrive at a method that is stable and efficient at low frequencies. These will then be integrated with the well known fast multipole method, thus forming a scheme that is wideband. Rigorous convergence estimates of this method are derived, and convergence and efficiency of the overall fast method is demonstrated. These are then integrated into an existing integral equation solver, whose efficiency is demonstrated for some practical problems.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:57 ,  Issue: 7 )