By Topic

Comprehensive Analysis of Random Telegraph Noise Instability and Its Scaling in Deca–Nanometer Flash Memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Andrea Ghetti ; Numonyx, R&D-Technol. Dev., Agrate Brianza, Italy ; Christian Monzio Compagnoni ; Alessandro S. Spinelli ; Angelo Visconti

This paper presents a comprehensive investigation of random telegraph noise (RTN) in deca-nanometer Flash memories, considering both the nor and the nand architecture. The statistical distribution of the threshold voltage instability is analyzed in detail, evidencing that the slope of its exponential tails is the critical parameter determining the scaling trend for RTN. By means of 3-D TCAD simulations, the slope is shown to be the result of cell geometry, atomistic substrate doping, and random placement of traps over the cell active area. Finally, the slope dependence on cell geometry (width, length, and oxide thickness), doping, and bias conditions is summarized in a powerful formula that is able to predict the RTN instabilities in deca-nanometer Flash memories.

Published in:

IEEE Transactions on Electron Devices  (Volume:56 ,  Issue: 8 )