By Topic

A Single-Pixel Imaging System for Remote Sensing by Two-Step Iterative Curvelet Thresholding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jianwei Ma ; Sch. of Aerosp., Tsinghua Univ., Beijing, China

Recently, a new framework named compressed sensing (CS) for the simultaneous sampling and compression of signals has been applied for panoramic-view imaging in aerospace remote sensing. By CS, it is possible for us to take superresolution photographs using only one or a few pixels rather than a million pixels by conventional digital cameras. However, the most popular approach of satellite/airborne remote sensing is line-scan imaging instead of panoramic-view imaging. In this letter, we propose a single-pixel imaging system for line-scan onboard cameras by applying compressive-scanning matrices in a sensing step and a two-step iterative curvelet thresholding method in an offline decoding step, which converges faster than previous single-step iterative thresholding methods. Numerical experiments show good performance of the proposed method for remote sensing. Results indicate the need to design practical single-pixel remote sensing instruments involving less storage space, less power consumption, and smaller size than the currently used charged-coupled-device cameras.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:6 ,  Issue: 4 )