By Topic

A Change Detection Algorithm for Retrieving High-Resolution Soil Moisture From SMAP Radar and Radiometer Observations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Maria Piles ; Dept. de Teor. del Senyal i Comunicacions, Univ. Politec. de Catalunya, Barcelona, Spain ; Dara Entekhabi ; Adriano Camps

A change detection algorithm has been developed in order to obtain high-resolution soil moisture estimates from future Soil Moisture Active and Passive (SMAP) L-band radar and radiometer observations. The approach combines the relatively noisy 3-km radar backscatter coefficients and the more accurate 36-km radiometer brightness temperature into an optimal 10-km product. In preparation for the SMAP mission, an observation system simulation experiment (OSSE) and field experimental campaigns using the Passive and Active L- and S-band Airborne Sensor (PALS) have been conducted. We use the PALS airborne observations and OSSE data to test the algorithm and develop an error budget table. When applied to four-month OSSE data, the change detection method is shown to perform better than direct inversion of the radiometer brightness temperatures alone, improving the root mean square error by 2% volumetric soil moisture content. The main assumptions of the algorithm are verified using PALS data from the soil moisture experiments held during June-July 2002 (Soil Moisture Experiment 2002) in Iowa. The algorithm error budget is estimated and shown to meet SMAP science requirements.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:47 ,  Issue: 12 )