By Topic

Performance of Orthogonal Fingerprinting Codes Under Worst-Case Noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kiyavash, N. ; Dept. of Ind. & Enterprise Syst. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Moulin, P.

We study the effect of the noise distribution on the error probability of the detection test when a class of randomly rotated spherical fingerprints is used. The detection test is performed by a focused correlation detector, and the spherical codes studied here form a randomized orthogonal constellation. The colluders create a noise-free forgery by uniform averaging of their individual copies, and then add a noise sequence to form the actual forgery. We derive the noise distribution that maximizes the error probability of the detector under average and almost-sure distortion constraints. Moreover, we characterize the noise distribution that minimizes the decoder's error exponent under a large-deviations distortion constraint.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:4 ,  Issue: 3 )