Cart (Loading....) | Create Account
Close category search window
 

Channel-Based Detection of Sybil Attacks in Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Liang Xiao ; Dept. of Commun. Eng., Xiamen Univ., Xiamen, China ; Greenstein, L.J. ; Mandayam, Narayan B. ; Trappe, W.

Due to the broadcast nature of the wireless medium, wireless networks are especially vulnerable to Sybil attacks, where a malicious node illegitimately claims a large number of identities and thus depletes system resources. We propose an enhanced physical-layer authentication scheme to detect Sybil attacks, exploiting the spatial variability of radio channels in environments with rich scattering, as is typical in indoor and urban environments. We build a hypothesis test to detect Sybil clients for both wideband and narrowband wireless systems, such as WiFi and WiMax systems. Based on the existing channel estimation mechanisms, our method can be easily implemented with low overhead, either independently or combined with other physical-layer security methods, e.g., spoofing attack detection. The performance of our Sybil detector is verified, via both a propagation modeling software and field measurements using a vector network analyzer, for typical indoor environments. Our evaluation examines numerous combinations of system parameters, including bandwidth, signal power, number of channel estimates, number of total clients, number of Sybil clients, and number of access points. For instance, both the false alarm rate and the miss rate of Sybil attacks are usually below 0.01, with three tones, pilot power of 10 mW, and a system bandwidth of 20 MHz.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:4 ,  Issue: 3 )

Date of Publication:

Sept. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.