By Topic

Statistical Motion Information Extraction and Representation for Semantic Video Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Papadopoulos, G.T. ; Electr. & Comput. Eng. Dept., Aristotle Univ. of Thessaloniki, Thessaloniki, Greece ; Briassouli, A. ; Mezaris, V. ; Kompatsiaris, I.
more authors

In this paper, an approach to semantic video analysis that is based on the statistical processing and representation of the motion signal is presented. Overall, the examined video is temporally segmented into shots and for every resulting shot appropriate motion features are extracted; using these, hidden Markov models (HMMs) are employed for performing the association of each shot with one of the semantic classes that are of interest. The novel contributions of this paper lie in the areas of motion information processing and representation. Regarding the motion information processing, the kurtosis of the optical flow motion estimates is calculated for identifying which motion values originate from true motion rather than measurement noise. Additionally, unlike the majority of the approaches of the relevant literature that are mainly limited to global- or camera-level motion representations, a new representation for providing local-level motion information to HMMs is also presented. It focuses only on the pixels where true motion is observed. For the selected pixels, energy distribution-related information, as well as a complementary set of features that highlight particular spatial attributes of the motion signal, are extracted. Experimental results, as well as comparative evaluation, from the application of the proposed approach in the domains of Tennis, News and Volleyball broadcast video, and Human Action video demonstrate the efficiency of the proposed method.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:19 ,  Issue: 10 )