By Topic

An Arbitrary-Order LOD-FDTD Method and its Stability and Numerical Dispersion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qi-Feng Liu ; Center for Microwave & RF Technol., Shanghai Jiao Tong Univ., Shanghai, China ; Zhizhang Chen ; Wen-Yan Yin

An arbitrary-order unconditionally stable three-dimensional (3-D) locally-one- dimensional finite-difference time-method (FDTD) (LOD-FDTD) method is proposed. Theoretical proof and numerical verification of the unconditional stability are shown and numerical dispersion is derived analytically. Effects of discretization parameters on the numerical dispersion errors are studied comprehensively. It is found that the second-order LOD-FDTD has the same level of numerical dispersion error as that of the unconditionally stable alternating direction implicit finite-difference time-domain (ADI-FDTD) method and other LOD-FDTD methods but with higher computational efficiency. To reduce the dispersion errors, either a higher-order LOD-FDTD method or a denser grid can be applied, but the choice has to be carefully made in order to achieve best trade-off between the accuracy and computational efficiency. The work presented in this paper lays the foundations and guidelines for practical uses of the LOD method including the potential mixed-order LOD-FDTD methods.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:57 ,  Issue: 8 )