By Topic

Directional Bend Sensing With a CO _{2} -Laser-Inscribed Long Period Grating in a Photonic Crystal Fiber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Long Jin ; Dept. of Electr. Eng., Hong Kong Polytech. Univ., Kowloon, China ; Wei Jin ; Jian Ju

In this paper, we present a directional bend sensor based on a long period grating (LPG) formed by introducing periodic grooves along one side of a photonic crystal fiber (PCF) with a focused CO2 laser beam. A bend sensitivity of 2.26 nm/m-1 within a range of - 5 ~ + 5 m-1 is experimentally demonstrated. Numerical simulation suggests that the directional response is the result of asymmetric cladding geometry resulted from collapse and/or deformation of air holes and asymmetric material-index modulation caused by one-sided illumination of the CO2 laser beam. The sensitivity could be further enhanced by increasing the area of the air-silica photonic crystal cladding and optimizing the size of individual air holes. The easy fabrication process and good linear response of the proposed sensor make it a suitable candidate for structural shape sensing in harsh environments.

Published in:

Lightwave Technology, Journal of  (Volume:27 ,  Issue: 21 )