By Topic

Are More Features Better? A Response to Attributes Reduction Using Fuzzy Rough Sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jensen, R. ; Dept. of Comput. Sci., Univ. of Wales, Aberystwyth, UK ; Qiang Shen

A recent TRANSACTIONS ON FUZZY SYSTEMS paper proposing a new fuzzy-rough feature selector (FRFS) has claimed that the more attributes remain in datasets, the better the approximations and hence resulting models. [Tsang , IEEE Trans. Fuzzy Syst. , vol. 16, no. 5, pp. 1130-1141]. This claim has been used as a primary criticism of the original FRFS method [Jensen and Shen, IEEE Trans. Fuzzy Syst., vol. 15, no. 1, pp. 73-89, Feb. 2007]. Although, in certain applications, it may be necessary to consider as many features as possible, the claim is contrary to the motivation behind feature selection concerning the curse of dimensionality, the presence of redundant and irrelevant features, and the large amount of literature documenting observed improvements in modeling techniques following data reduction. This letter discusses this issue, as well as two other issues raised by Tsang [IEEE Trans. Fuzzy Syst., vol. 16, no. 5, pp. 1130-1141, Oct. 2008] regarding the original algorithm.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:17 ,  Issue: 6 )