By Topic

Influence of Mode Loss on the Feasibility of Grating-Assisted Optical Fiber Surface Plasmon Resonance Refractive Index Sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu-Chun Lu ; Key Lab. of All Opt. Network, Beijing Jiaotong Univ., Beijing, China ; Huang, Wei-Ping ; Shui-sheng Jian

In this paper, the influence of mode loss on the feasibility of grating-assisted optical fiber surface plasmon resonance (SPR) refractive index (RI) sensors is investigated. The loss of surface plasmon polarition (SPP) mode plays a key role in the design and implementation of such sensors. It is demonstrated through simulation that the grating length should be smaller than or comparable with the propagation length of SPP mode in order to achieve effective coupling. The loss of SPP mode is the severe limiting factor for the implementation of the grating-assisted SPR-RI sensors. More generally, in order to achieve effective mode coupling with the help of waveguide grating, the grating length is bounded by the shortest propagation length of the modes in lossy waveguides.

Published in:

Lightwave Technology, Journal of  (Volume:27 ,  Issue: 21 )