By Topic

Universal Perceptron and DNA-Like Learning Algorithm for Binary Neural Networks: Non-LSBF Implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Fangyue Chen ; Sch. of Sci., Hangzhou Dianzi Univ., Hangzhou, China ; Guanrong Chen ; Qinbin He ; Guolong He
more authors

Implementing linearly nonseparable Boolean functions (non-LSBF) has been an important and yet challenging task due to the extremely high complexity of this kind of functions and the exponentially increasing percentage of the number of non-LSBF in the entire set of Boolean functions as the number of input variables increases. In this paper, an algorithm named DNA-like learning and decomposing algorithm (DNA-like LDA) is proposed, which is capable of effectively implementing non-LSBF. The novel algorithm first trains the DNA-like offset sequence and decomposes non-LSBF into logic XOR operations of a sequence of LSBF, and then determines the weight-threshold values of the multilayer perceptron (MLP) that perform both the decompositions of LSBF and the function mapping the hidden neurons to the output neuron. The algorithm is validated by two typical examples about the problem of approximating the circular region and the well-known n -bit parity Boolean function (PBF).

Published in:

Neural Networks, IEEE Transactions on  (Volume:20 ,  Issue: 8 )