Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Quantum-Inspired Evolutionary Algorithm Approach for Unit Commitment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lau, T.W. ; Dept. of Electr. Eng., Hong Kong Polytech. Univ., Hong kong, China ; Chung, C.Y. ; Wong, K.P. ; Chung, T.S.
more authors

This paper presents a novel method for solving the unit commitment (UC) problem based on quantum-inspired evolutionary algorithm (QEA). The proposed method applies QEA to handle the unit-scheduling problem and the Lambda-iteration technique to solve the economic dispatch problem. The QEA method is based on the concept and principles of quantum computing, such as quantum bits, quantum gates and superposition of states. QEA employs quantum bit representation, which has better population diversity compared with other representations used in evolutionary algorithms, and uses quantum gate to drive the population towards the best solution. The mechanism of QEA can inherently treat the balance between exploration and exploitation and also achieve better quality of solutions, even with a small population. The proposed method is applied to systems with the number of generating units in the range of 10 to 100 in a 24-hour scheduling horizon and is compared to conventional methods in the literature. Moreover, the proposed method is extended to solve a large-scale UC problem in which 100 units are scheduled over a seven-day horizon with unit ramp-rate limits considered. The application studies have demonstrated the superior performance and feasibility of the proposed algorithm.

Published in:

Power Systems, IEEE Transactions on  (Volume:24 ,  Issue: 3 )